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Abstract: If the market price is considered to be the outcome of the interaction of heterogeneous agents, there may
be an important effect of lagged absolute returns on price dynamics. In order to illustrate this effect a simple model
of heterogencous traders is introduced which, although minimalist by construction, does produce realist price
dynamics. Simple changes in dynamics conditional on lagged returns in various daily equity indices are assessed by
means of smooth transition autoregressive models. The results are reasonably supportive of the conclusion that such

interaction effects may be present in actual market data.
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1. INTRODUCTION

Many financial markets exhibit a range of similar
empirical characteristics. It is well established that
returns from financial assets have non-normal
distributions, exhibit volatility clustering and contain
some nonlinear structure. A recent approach to
account for these facts has been to describe the
market as the observed outcome of many interacting
agents with heterogeneous behavioural patterns. The
notion of heterogeneity stems from Black [1986] who
highlights the importance of noise in financial
markets. While noise may be considered as low
quality information regarding value, its role in
motivating trading to ensure liquid markets is
imperative. Whereas noise in the usual statistical
sense is considered to be the outcome of a particular
random sequence, noise in the informational sense is
not necessarily random in nature. Much noise trading
activity that occurs is not random and is the result of
mechanistic trading rules or fundamental
psychological biases in the decision making process.
Such behaviour has become known as feedback
trading. This notion of feedback behaviour, in various
forms, has been included in many (some quite
complex) models of agent interaction to describe the
microstructure perspective of trading in a financial
market. Such models of interaction include Chiarella
[1992], Day and Huang [1990], De Grauwe et al.
[1993] and Lux [1998]). The motivation for these
models has been to develop plausible accounts for the
observed dynamics of financial markets. To this end,
they have been quite successful.

One problem with these recent contributions is the

increasing level of complexity used to describe
feedback behaviour. The model proposed in this

paper, however, secks to be completely transparent
and make minimal assumptions about the information
sets required by traders. To this end, the starting point
is taken to be Cutler et al. [1990] who define the

behaviour (excess demand for assets) of feedback

traders as a linear function of lagged returns. While
the information set utilised is straightforward, a
simple linear reaction to returns history may not truly
reflect the mechanisms underlying feedback
behaviour, Technical analysis, as one example of
feedback trading, suggests the use of trading ranges,
support and resistanc e points and breakout patterns,
to name but a few, all of which may produce non-
linear reactions to price movements. The concept of a
threshold in representing the trading decision of a

feedback trader is useful when considering the
mechanistic rules underlying strategies that generate
feedback patterns. This paper differs in its description
of feedback behaviour, in the sense that it allows for a
probabilistic assessment of the trading decision on the
part of feedback traders, incorporating the notion of
thresholds and a link by which past returns influence
decision making.

If decision-making is influenced by market conditions
then it may be expected that measures of current
returns, as a reflection of the amount of information
arriving into the market, may have an effect on future
price dynamics. Ensuing interaction between agents
produces price changes exhibiting periods of both
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calm and. This behaviour is not subordinated to any
underlying information arrival process as suggested
by Clark [1973] and examined by Lamoureux and
Lastrapes [1990] with trading volume was used as the
proxy for information flow. Outcomes are solely due
to the decision making process employed by
heterogeneous groups of traders. It is their behaviour,
by reacting to price movements that propagates
volatility and creates persistence in the observable
when there is none in the underlying.

Section 2 of the paper will outline the behavioural
rules underlying the model of interaction and discuss
the ensuing dynamics. Section 3 discusses the impact
of past returns on current mean dynamics from both
the model of interaction and a number of equity
indices. Section 4 contains concluding comments.

2, MODELLING AGENT INTERACTION
2.1 Feedback traders

This model specifies feedback behaviour based solely
on past price movements, but in such a way that the
herding element is generated. In this model 100
individual feedback traders are assumed to exist and
each is allocated a unique price, ., s=1...100, at
which their last trade occurred. This price is initially
generated randomly as a normal deviate with mean
given by the starting price, p,, and is updated by
each individual anytime they decide to trade.

The trading decision for feedback trader i is based on
the absolute difference between the current price and
the historic trade price, Ipt — Dis I, in a
probabilistic manner as follows ’

|25 ifm| B - B, 2 010, o

# 1o otherwise

where £ is a constant demand, whose sign matches
that of p, —p,, and m, is a parameter that
determines the width of the threshold within which
trading is  uncertainn. For  example, if
m, =20 feedback trader i will trade with certainty if
2 —jl.',l >0.05. In the interim, a trade is more
ikely the greater this absolute difference becomes.
The beauty of this simple model is that it allows both
longer-term price swings and very current returns to
‘impact upon demand. The former effect is captured
by the central role of p, — 7 4¢ in the decision rule,

and the latter effect is obtained by the changing
threshold parameter.

It remains to say a few words about how the threshold
parameter is updated. The width of a trader’s
threshold reflects the importance placed on p, — Py
and the belief that there is persistence in price
movements. At any given point in time each feedback
trader assesses the relative magnitude of the current
return, 7, , by means of a standardized style measure,
' r,=nlo, )
where g, represents a prior of the volatility of returns
and is set in accordance with other parameters from
within the model. If 7, <, a given constant and the
sign of r, matches that of p,— 5, a narower
threshold is used in trading decisions for the
upcoming period, that is to say m,, >m,. This
increase results in a narrower bound past which
trading is certain, a feature which reflects an
increased state of anxiety in feedback traders and
serves to increase current volatility. While the
criteria used to assess and weight information are
arbitrary, they serve to highlight the possibility that
changes in the flow of information may change the
behaviour of individuals in the market and thus
overall dynamics.

2.2 Fundamental traders

In common with the previous literature, traders acting
on information regarding the fundamental value of
assets are also considered. Such participants represent
the process of arbitrage in the marketplace. Based on
current price and their perception of fundamental
value, they trade with the view that a divergence
between market and fundamental value will be
eliminated. Their strategy is clearly one of buying
(selling) when the current price, p,, is below (above)
perceived fundamental value p,, in the belief that
this mispricing will be eliminated. As a reflection of
the uncertainty surrounding such a strategy due to
noise trader risk, as discussed in De Long et al.
[1990], demand from fundamentalists will not appear
until prices have drifted sufficiently from underlying
value where expected returns from the reversion is
sufficient to overcome noise trader risk. Excess
demand for an asset from such a strategy will take the
following form

: .o | P2 —P/tl
~Bp, - 7s) nf'—'z A
D=1 " 2y ()

0 otherwise
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Here A represents the threshold past which
fundamentalists deem the strategy to be worthwhile in
the sense that its expected return is sufficient
compensation for the risk due to the action of
feedback traders.

23 Price dynamics

Assuming a constant supply of the stock so that price
adjusts to eliminate excess demand, market price
evolves according to

100
Dy, =Dy +3 0, +D, @
=1

where D, ~ N(0,02)is included to represent random
trading not linked to information and possibly due to
liquidity or other various idiosyncratic requirements.

Figure 1 depicts a typical price path of 2000
observations, generated with p,, evolving as a
random walk. Parameters chosen for this simulation
are k¥ =0.0025, o, =0.0015, 6, =0.001, @=0.5,
B=005 and A=0.15. The effects of altering
various parameters will discussed in a later section
subsequent to an examination of the resultant

dynamics.

Prica Chonges

T

Figure 1. Evolution of simulated returns.

It is clear from Figure 1 that the interaction of the
groups of traders generates a system where prices are
driven away from value and then revert to the
fundamental. Periods of relative calm are followed by
breakouts in prices as particular signals from either
group dominate.

Two common empirical facts of financial time series
are that the distribution of returns exhibit excess
kurtosis and high persistence in volatility. Figure 2

indicates that price changes from this system do in
fact show the former property with the distribution
having a sharper peak around the mean and somewhat
heavier tails than a normal distribution. The
persistence in volatility may be verified by estimating
a simple model of conditional variance. The
important point to note here, however, is that the
persistence in variance is now explicity related to the
dynamic pricing mechanism. It is the changes in
mean dynamics due to the interaction of
heterogeneous traders which accounts for the
conditional volatility. An appropriate model of the
dynamics should account for the heteroskedasticity.

Distribution of Simulated Returns
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Figure 2. Non-parametric density estimate of the
standardized simulated returns (solid curve) and
standard normal distribution (dashed curve).

While these results are generated by the interaction of
the particular behavioural rules outlined previously
and for the assumed parameter values, they do
indicate reasonably realistic price dynamics. The
impact of varying some of these parameters is now
outlined. Increasing a has little impact on dynamics,
the distribution of returns becomes somewhat less
peaked and prices become more regular as traders are
trading more frequently and in a more correlated
manner. Conversely, when « decreases, returns
approach a normal distribution where prices become
more random as less coupling of traders occurs, due
to wider thresholds in the decision-making process.
Increases in Ahave no discernible effect, while
decreases lead to a slightly less peaked returns
distribution and more regular price movements. The
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parameters x and B are set to ensure a stable system.
If both are increased this simply leads to deviations
from value being created and extinguished at a higher
frequency as the strength of the signals increase. In
general, price dynamics appear to be reasonably
robust to changes in the parameter values.

Outcomes from the interaction of heterogeneous
trading rules do reflect characteristics observed in
financial asset retums. Price changes from this
simulated model do exhibit non-normal distributions
with excess kurtosis and high levels of persistence in
conditional volatility. The returns appear to exhibit
periods of both calm and calamity without
subordination explanations. Such observations
themselves are not of great interest in that previous
models also produce such behaviour. The novel point
here is that such dynamics may be produced when
feedback effects are influenced by the magnitude of
past returns and thus a link to mean dynamics would
be expected. The following section investigates this
possibility.

3. MEAN DYNAMICS

In general, models of volatility describe conditional
volatility of retums, o’f , to be some function of the
magnitude of past returns. The exact form of this
dependence has been the subject of a vast literature.
Based on the realistic behaviour observed by
examining the simulated returns earlier, it is
suggested that the magnitude of past returns should
have an impact not only on volatility but also on
mean dynamics as it impinges upon the decision
making of individuals in the market. To capture this
effect, an approach that allows the link between past
returns and observed dependency is required. For this
purpose, the smooth transition framework of
Terdisvirta [1994] is utilised where past returns
influence current levels of dependence. The focus
here will be on the Logistic Smooth Transition
Autoregressive (LSTAR) model. The LSTAR
approach is chosen in preference to the related
Exponential STAR in this situation as changes in the
magnitude of returns are deemed to have an abrupt
effect on dynamics. In the limit the LSTAR model is
capable of approximating a Heaviside Function at the
point at which the change occurs and this
characteristic is deemed appealing in this particular
-application where the detection such abrupt changes
is paramount. The model takes the following form

Yy STy +7 "Wy + (a0 +705 "W, ) F (3,4 ) +4,(5)
where

F(ya)=[1+em (-0 (s -))'] ©

The parameter d is the delay parameter and its choice
determines the lag which is selected as the state
variable. The error term, u, ~ NID(0,0?), is assumed
homoskedastic once the mean dynamics account for
the dependence on past returns in the nonlinear way
suggested by the model and captured by the two-state
smooth  transition = model. Note  that
ny=(Tpy. & p)' for j=1,2 and the state vector w, is
given by (.. ¥4)'. The value of the state
variable influences the transition function F(-) and
therefore the contribution of #,, and =, 'to the
dependence in the {y}series. Being based on a
logistic function, the transition function essentially
switches the impact of these parameters on or off. As
the model of interaction suggests the magnitude of
returns should influence cbserved dependency the
state variable used here is | ¥,-¢| although, for ease of
reference, the absolute value notation will not be
explicit. Note that the choice of using the absolute
value of returns as the state variable is driven by the
theoretical model and to enable the magnitude of
returns to impact on price dynamics. The effect of
this choice on asymptotic properties of estimates
obtained from the LSTAR model will be the subject
of future research.

The estimation of the model begins with the test for
general non-linearity suggested by Terdsvirta [1994]
that is based on the following model,

Y =Yo+1 "W +72' (W-q)
Ll £ '(Wt}'r-d )2 +7s '(wlyt—d )3 +1,

and is a test of the mnull hypothesis of
7> =7; =% =0. Based on a determined value for p,
d is chosen by taking that value of the parameter
which yields the strongest rejection of the null
hypothesis. It is then possible to estimate the model
by minimising the residual sum of squares function
with respect to the parameter vector.

Simulated returns are examined with an AR(4)
specification appearing to be a sufficient lag
structure. Based on this value for p, the general test
for non-linearity is conducted and d=1 is found to be
the optimal delay parameter. Equation (5) was
estimated, with the parameter ¢ being scaled by G ;.
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Table 1 outlines the results for this sample for slope
parameters only, since both intercept tems were
found to be statistically insignificant.

Table 1. Estimates of the slope parameters of an
LSTAR model for simulated returns with associated

the FTSE in particular, the statistical significance of
the results is of concern with the two crucial
parameters, 7,, and ¢, both being insignificant. For
the SPI it is only the estimate of ¢ which is poorly
resolved, with the negative dependence being fairly
clear, Despite these caveats, however, there secems

QML standard errors. . .
- general support for the hypothesis the magnitude of
Parameter Estimates for LSTAR past retumg liJnﬂuences they:ctual dynamic ng1:(l:hanism
model underlying stock prices.
Estimate | Parameter | Estimate
oy 02935 oy -0.1418 - Table 2. Estimates for the slope parameters of the
0.037) (20.11) LSTAR model for S&P, FTSE, DJIA and SPI indices,
Ty 0.0573 T3y -0.3941 with associated QML standard errors.
(0.079) 0.243) S&P FTSE DIJIA SPI
Ty 0.0083 T3 -04974 &y | 01046 | 01766 | 00871 | 0.1108
0.193) (0216) ©027) | (0030) | (0027) | (0.035)
T 0.0073 - 04442 Ty -0.0746 -0.0455 -0.0648
0.070) (0.059) 0027) | (0034 | (0.026)
P 28995 c 02132 Ty -0.1396 | -0.0356 | -02275 <0.1809
(2076) (0.009) (0.075) (0.108) (0.096) (0.053)

The positive estimate of ¢ means that F(y,_4) =1
for |y4|<02132 F(y,4)=0 for |y, 4|>02132.
In effect this means that there is an abrupt change in
dynamics due to changes in l %-1] » in the vicinity of
the critical value 0.2132. When lagged returns are
relatively small in magnitude, dependence on past
returns appears to be negative. This effect disappears
when the converse is true.

It is now possible to compare a number of equity
index behaviour to that of the simulated returns.
Indices considered are as follows: the S\&P 500,
12740 observations from 16 January 1950 to 13 June
2000; the FTSE 100, 3899 observations from 6
January 1984 to 28 February 2000; the DJIA, 12612
observations, 3 January 1951 to 17 October 2000; and
the Australian SPI 5360 observations, 2 January 1980
to 6 March 2001. All are parsimoniously defined by
an AR(2) process and have an optimal value of d=1
with the exception of the SPI index for which an
AR(1) is sufficient. Results for estimating equation
(5) for all the indices are reported in Table 2.

It appears that all of the indices examined here do in
fact exhibit the same behaviour to varying degrees.
That is, when lagged returns are relatively small
magnitude, dependence appears to be dominated by a
negative relationship while this effect disappears
when the converse is true. Qualitatively the results
appear different for the S&P and DJIA on one hand,
and the FTSE and the SPI indices on the other. For

-0.1053 -0.0760 0.0963

22
0036 | (0042) | (0.040)

¢ 36474 17779 308.92 2997

6157 | 3100 | (159.0) @2.25)
c 00033 | 00049 | 00024 | 00066

©000) | ©000) | ©o00) | (0000

In terms of the theoretical model outlined in the
previous section, the behaviour summarized by these
smooth transition models may be rationalized as
follows. For periods of relative calm, when absolute
retums are small in magnitude, the behaviour of
feedback traders is governed by relatively large
thresholds. In these periods fundamentals dominate
price behaviour and returns show negative correlation
indicating reversion to fundamentals. Once a price
breakout occurs, the thresholds of feedback traders
narrow as the market moves into a hightened state of
excitement. As more feedback trades are triggered
price is driven further away from fundamental,
resulting in positive correlation between current and
past returns. This continues until the demand from
fundamental traders forces price to revert and another
period of calm ensues.

4. CONCLUSION

This paper has suggested that the absolute magnitude
of past returns have a potentially important impact
upon the dynamics of the conditional mean of returns.
A simple model of trader interaction is proposed,
which although minimalist by construction, does
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appear to produces realistic dynamics. The key
element in the model is the fact that past shocks
influence trading decision and thus also the dynamic
mechanism underlying price formation. To try and
relate the model to empirical reality, a logistic smooth
transition automgressive model is estimated for four
important equity indices. It is found in general, that
these four equity indices do exhibit the kind of pattern
suggested by the model of interaction, namely, that
when past pricc movements have been relatively
small (large) future dependence is expected to be
negative (positive). This is a neglected idea when
modeling financial time series where the magnitude
of past shocks usually only influence volatility.
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